
Python Imaging Library
(PIL)

John W. Shipman
2008-01-16 23:30

Abstract

Describes an image-processing library for the Python programming language.

This publication is available in Web form1 and also as a PDF document2. Please forward any
comments to tcc-doc@nmt.edu.

Table of Contents
1. Introduction .. 1
2. Definitions .. 2

2.1. Band ... 2
2.2. Modes .. 2
2.3. Sizes ... 2
2.4. Coordinates .. 2
2.5. Angles .. 2
2.6. Bboxes (bounding boxes) .. 3
2.7. Colors ... 3
2.8. Filters ... 3

3. Creating objects of class Image ... 4
3.1. Attributes of the Image object .. 4
3.2. Methods on the Image object ... 5

4. The ImageDraw module .. 8
5. Image enhancement: the ImageFilter module .. 9
6. The ImageFont module .. 10
7. The ImageTk module ... 10
8. Supported file formats .. 11

1. Introduction
The Python Imaging Library (PIL) allows you to create, modify, and convert image files in a wide
variety of formats using the Python language.

For additional PIL features not described in this document, refer to the online PIL handbook3.

For more information about Python, refer to the author's companion publication, Python programming
language quick reference4, or to the Python Web site5, for general information about the Python language.

1 http://www.nmt.edu/tcc/help/pubs/pil/
2 http://www.nmt.edu/tcc/help/pubs/pil/pil.pdf
3 http://www.pythonware.com/library/pil/handbook/index.htm
4 http://www.nmt.edu/tcc/help/pubs/python22/
5 http://www.python.org/

1Python Imaging Library (PIL)New Mexico Tech Computer Center

About this document
This document has been generated with RenderX XEP.
					Visit http://www.renderx.com/ to learn more about
					RenderX family of software solutions for digital
					typography.

http://www.nmt.edu/tcc/help/pubs/pil/
http://www.nmt.edu/tcc/help/pubs/pil/pil.pdf
http://www.pythonware.com/library/pil/handbook/index.htm
http://www.nmt.edu/tcc/help/pubs/python22/
http://www.nmt.edu/tcc/help/pubs/python22/
http://www.python.org/
http://www.nmt.edu/tcc/help/pubs/pil/
http://www.nmt.edu/tcc/help/pubs/pil/pil.pdf
http://www.pythonware.com/library/pil/handbook/index.htm
http://www.nmt.edu/tcc/help/pubs/python22/
http://www.python.org/

2. Definitions
These terms are used throughout:

2.1. Band
An image band is a set of values, one per image pixel. Monochrome or grayscale images have one band;
color images in the RGB system have three bands, CMYK images have four, and so on. Photoshop users
will recognize bands as similar to Photoshop channels.

2.2. Modes
The mode of an image describes the way it represents colors. Each mode is represented by a string:

DescriptionBandsMode
Black and white (monochrome), one bit per pixel.1"1"

Gray scale, one 8-bit byte per pixel.1"L"

Palette encoding: one byte per pixel, with a palette of class ImagePalette
translating the pixels to colors. This mode is experimental; refer to the online
documentation6.

1"P"

True red-green-blue color, three bytes per pixel.3"RGB"

True color with a transparency band, four bytes per pixel, with the A channel
varying from 0 for transparent to 255 for opaque.

4"RGBA"

Cyan-magenta-yellow-black color, four bytes per pixel.4"CMYK"

Color video format, three 8-bit pixels.3"YCbCr"

32-bit integer pixels.1"I"

32-bit float pixels.1"F"

2.3. Sizes
The sizes of objects in the image are described as a 2-tuple (w, h), where h is the height in pixels and
w is the width.

2.4. Coordinates
The coordinates of a pixel are of its upper left corner. Point (0,0) is the upper left corner of the image.
The x coordinate increases to the right, and the y coordinate increases downward.

When directions are given as compass points such as east or southwest, assume north is up, toward the
top of the display.

2.5. Angles
Angles are given in degrees. Zero degrees is in the +x (east) direction, and the angle increases counter-
clockwise, in the usual Cartesian convention. For example, angle 45 points northeast.

6 http://www.pythonware.com/library/pil/handbook/index.htm

New Mexico Tech Computer CenterPython Imaging Library (PIL)2

http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm

2.6. Bboxes (bounding boxes)
A bounding box or bbox is a rectangle in the image. It is defined by a 4-tuple, (x0, y0, x1, y1) where (x0,
y0) is the top left (northwest) corner of the rectangle, and (x1, y1) is the bottom right (southeast) corner.

Generally, the area described by a bounding box will include point (x0, y0), but it will not include point
(x1, y1) or the row and column of pixels containing point (x1, y1).

For example, drawing an ellipse inside the bounding box (0,0,5,10) will produce an ellipse 5 pixels
wide and 10 pixels high. The resulting ellipse will include pixel column 4 but not column 5, and will
also include pixel row 9 but not row 10.

2.7. Colors
You can specify colors in several different ways.

• For single-band images, the color is the pixel value. For example, in a mode "1" image, the color is
a single integer, 0 for black, 1 for white. For mode "L", it is an integer in the range [0,255], where 0
means black and 255 means white.

• For multi-band images, supply a tuple with one value per band. In an "RGB" image, the tuple
(255,0,0) is pure red.

• You can use CSS-style color name strings of the form #rrggbb, where rr specifies the red part as
two hexadecimal digits, gg specifies green, and bb blue. For example, "#ffff00" means yellow
(full red + full green).

• To specify RGB pixel values in decimal, use a string of the form "rgb(R,G,B)". For example,
"rgb(0,255,0)" is pure green.

• To specify RGB pixel values as percentages, use a string of the form "rgb(R%,G%,B%)". For example,
you can get a light gray with "rgb(85%,85%,85%)".

• To specify colors in the hue-saturation-lightness (HSV) system, use a string of the form
"hsl(H,S%,L%)".

H is the hue angle in degrees: 0 is red, 60 is yellow, 120 is green, and so on.

S is the saturation: 0% for unsaturated (gray), 100% for fully saturated.

The lightness L is 0% for black, 50% for normal, and 100% for white.

For example, "hsl(180,100%,50%)" is pure cyan.

• On Unix systems, you can use any of the standard color names from the locally installed set given in
file "/usr/lib/X11/rgb.txt", such as "white", "DodgerBlue", or "coral".

2.8. Filters
Some operations that reduce the number of pixels, such as creating a thumbnail, can use different filters
to compute the new pixel values. These include:

NEAREST
Uses the value of the nearest pixel.

BILINEAR
Uses linear interpolation over a 2x2 set of adjacent pixels.

3Python Imaging Library (PIL)New Mexico Tech Computer Center

BICUBIC
Uses cubic interpolation over a 4x4 set of pixels.

ANTIALIAS
Neighboring pixels are resampled to find the new pixel value.

3. Creating objects of class Image
Instances of the Image class contain an image. To use the basic Python imaging library, import it using
this syntax:

import Image

These functions return an Image object:

Image.open(f)
Reads an image from a file. The parameter f can be either the name of a file, as a string, or a readable
Python file object.

Image.new(mode,size,color=None)
Creates a new image of the given mode (p. 2) and size (p. 2). If a color (p. 3) is given, all pixels
are set to that color initially; the default color is black.

Image.blend(i1,i2,a)
Creates an image by blending two images i1 and i2. Each pixel in the output is computed from the
corresponding pixels p1 from i1 and p2 from i2 using the formula (p1 x (1 - a) + p2 x a).

Image.composite(i1,i2,mask)
Creates a composite image from two equal-sized images i1 and i2, where mask is a mask image
with mode "1", "L", or "RGBA" of the same size.

Each pixel in the output has a value given by (p1 x (1 - m) + p2 x m), where m is the corresponding
pixel from mask.

Image.eval(f,i)
Creates a new image by applying a function f to each pixel of image i.

Function f takes one argument and returns one argument. If the image has multiple bands, f is
applied to each band.

Image.merge(mode,bandList)
Creates a multi-band image from multiple single-band images of equal size. Specify the mode (p. 2)
of the new image with the mode argument. The bandList argument is a sequence of single-band
image objects to be combined.

3.1. Attributes of the Image object
These attributes of image objects are available:

.format
If the image was taken from a file, this attribute is set to the format code, such as "GIF". If the image
was created within the PIL, its .format will be None. See supported formats (p. 11) for a list of
the format codes.

.mode
The mode (p. 2) of the image, as a string.

New Mexico Tech Computer CenterPython Imaging Library (PIL)4

.size
The image's size (p. 2) in pixels, as 2-tuple (width,height).

.palette
If the mode of the image is "P", this attribute will be the image's palette as an instance of class Im-
agePalette; otherwise it will be None.

.info
A dictionary holding data associated with the image. The exact information depends on the source
image format; see the section on supported formats (p. 11) for more information.

3.2. Methods on the Image object
Once you have created an image object using one of the functions described above, these methods
provide operations on the image:

.save(f,format=None)
Writes the image to a file. The argument f can be the name of the file to be written, or a writeable
Python file object.

The format argument specifies the kind of image file to write. It must be one of the format codes
shown below under supported formats (p. 11), such as "JPEG" or "TIFF". This argument is required
if f is a file object. If f is a file name, this argument can be omitted, in which case the format is de-
termined by inspecting the extension of the file name. For example, if the file name is logo.jpg,
the file will be written in JPEG format.

.convert(mode)
Returns a new image with a different mode (p. 2). For example, if image im has mode "RGB", you
can get a new image with mode "CMYK" using the expression im.convert("CMYK").

.copy()
Returns a copy of the image.

.crop(bbox)
Returns a new image containing the bounding box (p. 3) specified by bbox in the original. The
rows and columns specified by the third and fourth values of bbox will not be included. For example,
if image im has size 4x4, im.crop((0,0,3,3)) will have size 3x3.

.filter(name)
Return a copy of the image filtered through a named image enhancement filter. See image filter (p. 9)
for a list of the predefined image enhancement filters.

.getbands()
Returns a sequence of strings, one per band, representing the mode (p. 2) of the image. For example,
if image im has mode "RGB", im.getbands() will return ('R', 'G', 'B').

.getbbox()
Returns the smallest bounding box (p. 3) that encloses the nonzero parts of the image.

.getextrema()
For single-band images, returns a tuple (min,max) where min is the smallest pixel value and max
the largest pixel value in the image.

For multi-band images, returns a tuple containing the (min,max) tuple for each band.

5Python Imaging Library (PIL)New Mexico Tech Computer Center

.getpixel(xy)
Returns the pixel value or values at the given coordinates (p. 2). For single-band images, returns
a single number; a sequence of pixel values is returned for multi-band images. For example, if the
top left pixel of an image im of mode "L" has value 128, then im.getpixel((0,0)) returns 128.

.histogram(mask=None)
For single-band images, returns a list of values [c0, c1, ...] where ci is the number of pixels
with value i.

For multi-band images, returns a single sequence that is the concatenation of the sequences for all
bands.

To get a histogram of selected pixels from the image, build a same-sized mask image of mode "1"
or "L" and pass it to this method as an argument. The resulting histogram data will include only
those pixels from the image that correspond to nonzero pixels in the mask argument.

.offset(dx,dy=None)
Returns a new image the same size as the original, but with all pixels rotated dx in the +x direction,
and dy in the +y direction. Pixels will wrap around. If dy is omitted, it defaults to the same value
as dx.

For example, if im is an image of size 4x4, then in the new image im.offset(2,1), the pixel that
was at (1,1) will now be at (3,2). Wrapping around, the pixel that was at (3,3)will now be at
(0,1).

.paste(i2,where,mask=None)
Pixels are replaced with the pixels from image i2.
• If where is a pair of coordinates (p. 2) (x,y), the new pixels are pasted so that the (0,0) pixel of
i2 pixel replaces the (x,y) pixel, with the other pixels of i2 pasted in corresponding positions.
Pixels from i2 that fall outside the original are discarded.

• If where is a bounding box (p. 3), i2 must have the same size as that bbox, and replaces the
pixels at that bbox's position.

• If where is None, image i2 must be the same size as the original, and replaces the entire original.

If the mode of i2 is different, it is converted before pasting.

If a mask argument is supplied, it is used to control which pixels get replaced. The mask argument
must be an image of the same size as the original.
• If the mask has mode "1", original pixels are left alone where there are 0 pixels in the mask, but

replaced where the mask has pixels of value 1.
• If the mask has mode "L", original pixels are left alone where there are 0 pixels in the mask, and

replaced where the mask has 255 pixels. Intermediate values interpolate between the pixel values
of the original and replacement images.

• If the mask has "RGBA" mode, its "A" band is used in the same way as an "L"-mode mask.

.paste(color,box=None,mask=None)
Sets multiple pixels to the same color. If the box argument is omitted, the entire image is set to that
color. If present, it must be a bounding box (p. 3), and the rectangle defined by that bbox is set to
that color.

If a mask is supplied, it selects the pixels to be replaced as in the previous form of the .paste()
method, above.

.point(function)
Returns a new image with each pixel modified. To apply a function f(x) to each pixel, call this
method with f as the first argument. The function should operate on a single pixel value (0 to 255)
and return the new pixel value.

New Mexico Tech Computer CenterPython Imaging Library (PIL)6

.point(table)
To translate pixels using a table lookup, pass that table as a sequence to the first argument. The
table should be a sequence of 256n values, where n is the number of bands in the image. Each pixel
in band b of the image is replaced by the value from table[p+256*b], where p is the old pixel's
value in that band.

.putalpha(band)
To add an alpha (transparency) band to an "RGBA"-mode image, call this method and pass it an
image of the same size having mode "L" or "1". The pixels of the band image replace the alpha
band of the original image in place.

.putpixel(xy, color)
Replaces one pixel of the image at coordinates (p. 2) xy. For single-band images, specify the color
as a single pixel value; for multi-band images, provide a sequence containing the pixel values of
each band.

For example, im.putpixel((0,0), (0,255,0)) would set the top left pixel of an RGB image
im to green.

Replacing many pixels with this method may be slow. Refer to the ImageDraw module for faster
techniques for pixel modification.

.resize(size,filter=None)
Returns a new image of the given size by linear stretching or shrinking of the original image. You
may provide a filter (p. 3) to specify how the interpolation is done; the default is NEAREST.

.rotate(theta)
Returns a new image rotated around its center by theta degrees. Any pixels that are not covered
by rotation of the original image are set to black.

.show()
On Unix systems, this method runs the xv image viewer to display the image. On Windows boxes,
the image is saved in BMP format and can be viewed using Paint. This can be useful for debugging.

.split()
Returns a tuple containing each band of the original image as an image of mode "L". For example,
applying this method to an "RGB" image produces a tuple of three images, one each for the red,
green, and blue bands.

.thumbnail(size,filter=None)
Replaces the original image, in place, with a new image of the given size (p. 2). The optional
filter argument works in the same way as in the .resize() method.

The aspect ratio (height : width) is preserved by this operation. The resulting image will be as large
as possible while still fitting within the given size. For example, if image im has size (400,150), its
size after im.thumbnail((40,40)) will be (40,15).

.transform(xs, ys, Image.EXTENT, (x0,y0,x1,y1))
Returns a transformed copy of the image. In the transformed image, the point originally at (x0,y0)
will appear at (0,0), and point (x1,y1) will appear at (xs, ys).

.transform(xs, ys, Image.AFFINE, (a,b,c,d,e,f))
Affine transformation. The values a through f are the first two rows of an affine transform matrix.
Each pixel at (x,y) in the resulting image comes from position (ax+by+c,dx+ey+f) in the input
image, rounded to the nearest pixel.

.transpose(method)
Return a flipped or rotated copy of the original image. The method can be any of:
• Image.FLIP_RIGHT_LEFT to reflect around the vertical centerline.

7Python Imaging Library (PIL)New Mexico Tech Computer Center

• Image.FLIP_TOP_BOTTOM to reflect around the horizontal centerline.
• Image.ROTATE_90 to rotate the image 90 degrees clockwise.
• Image.ROTATE_180 to rotate the image 180 degrees.
• Image.ROTATE_270 to rotate the image clockwise by 270 degrees.

4.The ImageDraw module
When you need to draw on an image, import the ImageDraw module like this:

import ImageDraw

Then instantiate a Draw object:

draw = ImageDraw.Draw(i)

where i is the Image object you want to draw on.

Methods on a Draw object include:

.arc(bbox,start,end,fill=None)
Draws an arc, that part of the ellipse fitting inside the bounding box (p. 3) bbox and lying between
angles start and end. Note: Angles increase clockwise, unlike angles elsewhere in the PIL. For
example, draw.arc((0,0,200,200), 0, 135) would draw a circular arc centered at (100,100)
and extending from the east to the southwest.

If supplied, the fill argument specifies the color of the arc. The default color is white.

.chord(bbox,start,end,fill=None,outline=None)
Same as the .arc() method, but it also draws a straight line connecting the endpoints of the arc.

For this method, the fill argument determines the color inside, that is, between the chord and the
arc. The default is that this area is not filled.

To change the color of the perimeter border around the chord's area, set the outline argument to
the color you want. The default color is white.

.ellipse(bbox,fill=None,outline=None)
Draws the ellipse that fits inside the bounding box (p. 3) bbox. To draw a circle, use a square
bounding box.

Note that the ellipse will include the left and top sides of the bounding box, but they will exclude
the right and bottom sides of the box. For example, a bounding box (0,0,10,10) will give you a
circle of diameter 10, not diameter 11.

If you omit the fill argument, only the perimeter of the ellipse is drawn. If you pass a color to
this argument, the interior of the ellipse will be filled with that color.

Use outline=c to draw the perimeter border using color c. The default color is white.

.line(L, fill=None)
Draws one or more line segments. The argument L specifies the endpoints, and can have either of
these forms:
• A sequence of 2-element sequences, each of which specifies one endpoint. For example,
draw.line([(10,20),(100,20)] would draw a straight line from (10,20) to (100,20). You
can specify any number of points to get a “polyline;” for example, draw.line(((60,60),
(90,60), (90,90), (60,90), (60,60))) would draw a square 30 pixels on a side.

New Mexico Tech Computer CenterPython Imaging Library (PIL)8

• A sequence containing an even number of values. Each succeeding pair is taken as an (x,y) co-
ordinate. For example, draw.line((10,20,100,20)) would give you the same result as the
first example in the paragraph above.

.pieslice(bbox,start,end,fill=None,outline=None)
Similar to the .arc() method, but draws two radii connecting the endpoints of the arc to the center.
The fill and outline arguments work in the same way as in the .chord() method: fill de-
termines the interior color, and outline sets the color of the border.

.point(xy,fill=None)
Sets the pixel at coordinates (p. 2) xy to the color specified by the fill argument. The default
color is white.

.polygon(L, fill=None, outline=None)
Works like the .line() method, but after drawing all the specified line segments, it draws one
more that connects the last point back to the first. The interior displays the fill, transparent by
default. The border is drawn in the outline color, defaulting to white.

For example, draw.polygon([(60,60), (90,60), (90,90), (60,90)], fill="red",
outline="green") would draw a square box with a green outline, filled with red.

.text(xy,message,fill=None,font=None)
Draws the text of the string message on the image with its upper left corner at coordinates (p. 2)
xy.

To write the text in color, pass that color to the fill argument; the default text color is white.

There is a default font, rather small (about 11 pixels tall) and in a serif style. You can also specify a
font using the font argument; see the ImageFont module for more information on fonts.

.textsize(message,font=None)
For a given text string message, returns a tuple (w,h) where w is the width in pixels that text will
occupy on the display, and h its the height in pixels.

If the font argument is omitted, you will get the size using the default font. Supply a font to this
method's font argument to get the size of the text in that font.

5. Image enhancement: the ImageFilter module
Certain operations allow you to filter the image data using one of a set of predefined filters. Use this
form of import:

import ImageFilter

Once you have imported the module, you can use any of these filters:

• ImageFilter.BLUR
• ImageFilter.CONTOUR
• ImageFilter.DETAIL
• ImageFilter.EDGE_ENHANCE
• ImageFilter.EDGE_ENHANCE_MORE
• ImageFilter.EMBOSS
• ImageFilter.FIND_EDGES
• ImageFilter.SMOOTH
• ImageFilter.SMOOTH_MORE
• ImageFilter.SHARPEN

9Python Imaging Library (PIL)New Mexico Tech Computer Center

6.The ImageFont module
To specify fonts for the .text() method from the ImageDraw module, import this module:

import ImageFont

You can then create a font object from any TrueType font by using this function:

ImageFont.truetype(file,size)
Returns a font object representing the TrueType font whose file name is given by the file argument,
with a font height of size pixels.

Methods on font objects include:

.getsize(text)
For a given string text, returns a tuple (w,h) where w is the width in pixels that text will occupy
on the display, and h its the height in pixels.

On Unix systems locally, TrueType fonts can be found in this directory:

/usr/share/fonts/

At this writing, there were two families of public-domain fonts:

• Deja Vu fonts: /usr/share/fonts/dejavu-lgc/.

• Liberation fonts: /usr/share/fonts/liberation/.

Here's a complete program that creates a 200x50 gray image, writes text on it in red, and saves it to file
runaway.jpg. File DejaVuLGCSansCondensed-Bold.ttf is sans-serif, condensed, bold font in the
Deja Vu family.

#!/usr/local/bin/python
import Image
import ImageDraw
import ImageFont

fontPath = "/usr/share/fonts/dejavu-lgc/DejaVuLGCSansCondensed-Bold.ttf"
sans16 = ImageFont.truetype (fontPath, 16)

im = Image.new ("RGB", (200,50), "#ddd")
draw = ImageDraw.Draw (im)
draw.text ((10,10), "Run awayyyy!", font=sans16, fill="red")
im.save ("runaway.jpg")

On Windows systems, look in C:\WINDOWS\Fonts.

7.The ImageTk module
This module is for use with the graphical user interface functions of the Tkinter package. For more in-
formation about the Tkinter widget set, see the local Tkinter page7.

To import the ImageTk module:

7 http://www.nmt.edu/tcc/help/lang/python/tkinter.html

New Mexico Tech Computer CenterPython Imaging Library (PIL)10

http://www.nmt.edu/tcc/help/lang/python/tkinter.html
http://www.nmt.edu/tcc/help/lang/python/tkinter.html

import ImageTk

This module contains two class constructors:

ImageTk.BitmapImage(i,**options)
Given an image i, constructs a BitMapImage object that can be used wherever Tkinter expects an
image object. The image must have mode "1". Any keyword options are passed on to Tkinter.
For example, the option foreground=c can be used to display the pixels of value 1 in color c,
while pixels of value 0 are transparent.

ImageTk.PhotoImage(i)
Given an image i, constructs a PhotoImage object that can be used wherever Tkinter expects an
image object.

Warning
There is a bug in the current version of the Python Imaging Library that can cause your images not to
display properly. When you create an object of class PhotoImage, the reference count for that object
does not get properly incremented, so unless you keep a reference to that object somewhere else, the
PhotoImage object may be garbage-collected, leaving your graphic blank on the application.

For example, if you have a canvas or label widget that refers to such an image object, keep a list named
.imageList in that object, and append all PhotoImage objects to it as they are created. If your widget
may cycle through a large number of images, you will also want to delete the objects from this list when
they are no longer in use.

ImageTk.PhotoImage(mode, size)
Creates an empty PhotoImage object with the given mode (p. 2) and size (p. 2).

To change image data in a PhotoImage object, use this method:

.paste(i2, bbox=None)
Image data from an Image object i2 is pasted into the PhotoImage object. To paste the new data
into a given location, specify the bbox argument as a bounding box (p. 3); this argument can be
omitted if i2 is the same size as the PhotoImage object.

8. Supported file formats
These are the kinds of image files supported by the PIL. The first column gives the PIL file type code,
as used in the Image.format attribute and the Image.save() method (although not all types can
be saved). The second column shows the file extensions associated with that type. The next two columns
show which modes can be read (if any) and written (if any), or the word “None” if that file type cannot
be read or written.

RemarksWrite modesRead modesExtensionsType

1 L P RGB1 L P RGB.bmp .dib"BMP"

Fax format. Only the first image is
read.

None1 L P RGB.dcx"DCX"

Encapsulated PostScriptL RGBNone.eps .ps"EPS"

PP.gif"GIF"

11Python Imaging Library (PIL)New Mexico Tech Computer Center

RemarksWrite modesRead modesExtensionsType
Used by LabEye and other applica-
tions.

AllAll.im"IM"

L RGB CMYKL RGB CMYK.jpg .jpe
.jpeg

"JPEG"

Photo CD format; will read the 768x512
resolution.

NoneRGB.pcd"PCD"

1 L P RGB1 L P RGB.pcx"PCX"

Adobe Page Description Format.1 RGBNone.pdf"PDF"

Portable Network Graphics format.1 L P RGB RGBA1 L P RGB RGBA.png"PNG"

1 L RGB1 L RGB.pbm .pgm
.ppm

"PPM"

Photoshop format.NoneP.psd"PSD"

1 L RGB CMYK1 L RGB CMYK.tif .tiff"TIFF"

X bitmap files.11.xbm"XBM"

X pixmap files with up to 256 colors.PP.xpm"XPM"

This table includes only some of the more common image formats. Refer to the online documentation8

for a full list.

8 http://www.pythonware.com/library/pil/handbook/index.htm

New Mexico Tech Computer CenterPython Imaging Library (PIL)12

http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm

